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Abstract- Mars Sample Return (MSR) is a key mission in 
the plan for Mars Exploration. During 2001, NASA issued 
contracts to four industrial teams to conduct a broad trade 
study of what they envisioned to be the best implementation 
of MSR; the teams were subsequently tasked with focusing 
on a specific concept and fleshing-out a design sufficiently 
to provide a cost for the mission. Finally, the teams were 
asked to identify any technology development or 
demonstrations that are prerequisite to the mission. Ths  
paper describes the breadth of rich trade space that exists for 
this mission. Included in the paper are both the themes 
resulting from the industry studies and the general scope of 
the focused concepts used to assess the current planning for 
the mission and precursor missions. Included in this 
conference are papers by the four industrial teams, as well 
as a fifth study by JPL’s Team-X to provide further 
corroboration of study results. The results suggest that a 
scientifically justifiable mission is possible, and that 
technology and precursor mission demonstration plans 
currently in the Mars Program are justified (with some 
modifications). 
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1. MEP OVERVIEW 
NASA has considered a sample return mission from Mars 
since the 1960’s (see the Extended Bibliography). The most 
recent series of studies of the Mars Sample Retum (MSR) 
concept seeks to establish a trade space framework for the 
evaluation of various mission architectures. Since 
technology development will lower the risk and cost of a 
sample retum and thereby enable a mission, these studies 
also seek to define the required technology. While it 

remains unclear when a sample return mission might occur, 
the current Mars Exploration Program (MEP) includes an 
eventual sample return as a goal. Precursor missions that 
demonstrate various required aspects of a sample retum 
mission must be included in any plan. Without precursor 
missions and technology development to reduce risk and 
cost, a sample return mission will remain too ambitious. 

Under the current MEP plan, the Mars Pathfiider and the 
Mars Global Surveyor (MGS) were launched in 1996. Mars 
Pathfinder demonstrated that a rover could maneuver in a 
limited fashion around the surface of Mars and make 
scientific measurements. While the goals of Pathfinder were 
limited, the mission, which lasted approximately 90 days, 
proved that a rover could be an essential part of a Mars 
surface mission. As a result of the success of t h s  mission, 
future surface missions (including sample return) require 
mobility to accomplish scientific objectives. 

MGS continues to return a stunning set of pictures of the 
globe. MGS not only provides a huge amount of global 
science, but also provides a crucial relay function for the 
2003 Mars Exploration Rovers (see Figure 1). 

2001 continues the legacy of global scientific return with the 
Odyssey orbiter mission, which features a moderate imaging 
capability combined with a multi-band thermal imaging 
spectrometer. This combination enables the highest 
resolution near infrared investigation to date. In addition, a 
gamma-ray spectrometer and neutron detector survey the 
planet for hydrogen (and consequently liquid or ice water) at 
coarse resolution. 

2003 shows a step function increase in roving capability 
with the launch of two Mars Exploration Rovers. MER uses 
a Mars Pathfinder heritage entry, descent, and landing 
(EDL) airbag system to place a much more capable rover on 
the surface. MER will be the first time a rover will move 
over the horizon from its landing point. Later in this paper, a 
summary of MSR mobility requirements will posit that the 
MER mobility capability is probably the minimum 
acceptable capability for a first sample return. 
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Figure 1. A collection of current and potential hture MEP missions in artist’s concept. Clockwise from upper left are: 1) 
2001 Odyssey orbiter, 2) Mars Reconnaissance Orbiter (MRO), 3) Potential future human missions for which robotic 

missions pave the way, 4) Mars Sample Return large rover and Mars Ascent Vehicle (MAV), 5) Mars Exploration Rover 
(MER) (1 of 2) with heritage Mars Pathfinder airbag system, 6 )  MER rover, 7) balloon mission, and 8) aeroshell streaking 

through the Mars atmosphere. 

2005 sees another increase in the resolution of imaging from 
an orbiter. MRO will carry a camera capable of 30- to 60- 
cm resolution images at possibly hundreds of 10-km-square 
sites. MRO will also return more data than all other Mars 
missions combined and enable better resolution images to 
complement the MGS and Viking orbiter global imaging 
data sets. MRO also has a hyperspectral imager and an 
Agenzia Spaziale Italiana (ASI, the Italian Space Agency) 
radar (follow up to the 2003 European Space Agency Mars 
Express mission). 

Any missions beyond 2005 are currently only in the 
planning stages and subject to change. Three missions are 
planned for 2007: 1) a Mars Scout (NASA Discovery 
analog, see 2002 IEEE Aerospace Conference paper 384 by 
Matousek for more details), 2) a Centre Nationale d’Etudes 
Spatiales (CNES - the French Space Agency))/NASA 
orbiter that also delivers the European Space Agency (ESA) 
Netlander probes and carries scientific instruments, and 3) 
an ASVNASA telecommunications and navigation support 
orbiter. The plan for 2009 calls for a surface mission to 
demonstrate precision landing (within 5 km of nominal), 
hazard avoidance, and hazard tolerance. Mobility 
requirements for the 2009 surface mission are unclear at this 
time. Most likely, the mission will have a MER-class rover 
with enhanced autonomy or a larger rover capable of greater 
mobility that can move outside the 10-km precision landing 
ellipse. More details of the MSR precision landing, hazard 

avoidance, and hazard tolerance requirements are located 
later in this paper and the industry and Team X papers. 2009 
may also have an ASVNASA science orbiter with 
undetermined science. Past the 2009 time frame, the current 
MEP plan becomes even more uncertain. A sample return 
mission is a possibility in the next decade. However, the 
earliest MSR could occur after 2009 would be 2013: one 
opportunity in between missions will be required to ensure 
that the techniques and technology demonstrated in the 2009 
mission for precision landing and hazard avoidance/ 
tolerance work correctly before building the hardware for 
MSR. During the spring of 2002, the MEP will examine the 
options and produce a plan for 201 1 and beyond. 

2. STUDY PURPOSE 

The MEP needed to take a fresh look at MSR in 2001. 
Several factors combined to warrant the breadth and scope 
of the studies. Chief amongst them are: 

The Mars Technology Program (MTP) needed to 
determine the technologies required for MSR and any 
precursor missions, such as the (then) large landerhover 
in 2007 that is referred to in the previous section as the 
2009 surface mission (see footnote 7 on the next page). 
The studies needed to finish and provide input on these 
technologies by October 2001 so as to aid the planning 



of the Fiscal Year 2002 and beyond Mars Technology 
Program6. 
The Mars 20077 surface mission was conceived as a 
combined effort of the 2007 project and the MTP. 
Because the mission has a long implementation schedule 
(to facilitate the infusion of advanced technologies), the 
2007 surface mission required determination of the 
characteristics of those technologies by spring, 2002. To 
determine the required technologies, NASMJPL decided 
to "leave no stone unturned" and embark on MSR 
studies tapping into the considerable capabilities of the 
US aerospace industry. 
Potential foreign partners required inputs on the MSR 
architecture so as to ensure adequate funding from their 
governments. In particular, the long lead schedule for 
the 2007 CNESNASA orbiter mission required a 
decision by the fall of 2001 from the French government 
with regard to funding and the parameters of MSR 
cooperation. 
NASA and JPL needed to know the potential cost of 
MSR. Previous efforts at MSR studies (Mars 03/05, 
MRSR, etc. - see the extended bibliography at the end 
of this paper for historical MSR studies) included some 
assumptions that are no longer valid. Technologies and 
program parameters have changed greatly over the past 
several years. To proceed with MEP program planning 
requires an understanding of the cost and schedule 
requirements for a MSR mission; it seemed logical to 
enlist US industry in the effort to determine MSR cost 
and schedule. 

Consequently, the Solar System Advanced Studies Office at 
JPL was commissioned by the MEP to begin the process of 
assembling a Request for Proposals, evaluating subsequent 
study proposals, monitoring progress of the industry studies, 
choosing appropriate study parameters for Phase 2 from the 
wide range of trades presented at the end of Phase 1, and 
assembling the data for the MEP to aid in determining when 
MSR can occur in the current program. 

The next section details the specifics of the study 
requirements with respect to information required by MEP 
to make informed decisions about MSR planning. 

3. OVERVIEW 

Structure 

Four industry teams were each funded $ lM to conduct a 
six-month study, divided into two steps: the first providing a 
broad trade study culminating in a variety of concepts that 

Cutts, J. ,  Hayati, S., et. al., " The Mars Technology Program," 6 

Proceedings of The 6th International Symposium on Artificial Intelligence, 
Robotics and Automation in Space. Key note speech, Montreal, Canada, 
June 18-22,2001. 

It looks very likely that the Mars 2007 Smart Lander surface mission will 
be delayed to 2009. At the time of the writing of this paper the date for the 
mission is not determined. This paper will assume the mission will occur in 
2009. When referring to the last year of MSR work, the Smart Lander 
surface mission was always assumed to occur in 2007. 
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covered the waterfront of what a reasonable mission might 
be, the second being a focused study of a concept (different 
for each team) in enough detail to identify cost, schedule, 
technology needs, and the prerequisite mission 
demonstrations that would be needed. The study was 
performed under the schedule shown in Figure 2. 

To obtain fresh ideas, the teams' activities were kept 
isolated from the others; with regard to information 
concerning previous work, only information contained in 
the open literature was made available to the teams. The 
teams were allowed to request information on the state of 
technology development and were briefed on Mars-related 
technology plans at the outset of the study. In addition, 
mission design and NASA infrastructure information was 
provided initially and by request. All requested information 
was sent to all four teams. 

In Phase 1, each team conducted a broad trade study 
addressing a diverse set of potentially viable technical 
approaches, with rationale behmd each trade. Phase 1 
required each team to generate at least two mission concepts 
based on the selected approaches that would rank highly 
when evaluated against the following selection criteria: 

1. Performance relative to sample return objectives. 
2. Development and life cycle costs. 
3. In-flight mission risks and overall reliability. 
4. Risks of technology readiness. 
5. Technology legacy provided to future Mars missions. 

Phase 1 culminated in a review for each team, the 
viewgraphs serving as a NASA-proprietary interim report. 

For Phase 2, JPL selected one of the mission concepts (or a 
modification thereof) for each team. JPL's process of 
mission concept selection is discussed further is Section 6 .  
The teams were asked to provide an in-depth study of the 
technical approach selected and a technical description of 
the resulting mission concept( s). In addition, a development 
cost estimate was required for the (1) formulation, (2) 
implementation (including mission operations system), and 
(3) launch phases for each concept, excluding the costs of 
the science payloads. Each team had to identify the 
technology development and demonstrations needed and the 
mission operations cost elements, all of which were not to 
be included in the estimate. Finally, each team had to 
provide requirements on technology development consisting 
Of: 

A listing of technology needs. 
Recommendations for the required testing andor 
flight validations. 

As was done after Phase 1, Phase 2 culminated in a final 
review for each team, with annotated briefing books 
delivered as a NASA-proprietary final report. 



I 2000 2001 
Start Date Activity Name Dec Jan Feb Mar Apr May Jun Jul Aug Sept Oci 

Commerce Business Daily Item 12/15/00 v 
Industry Briefing 2/13/01 

RFP Release 3/1/01 

v 
v 

Past Performance (proposal subsection) 3/8/01 v 
v Proposals Due 3/15/0 1 

Contractor Selection 41610 1 v 
Negotiations & Review 41610 1 m 

v 
v 

Phase 1 and Interim Report 7/23/01 v 
Begin Work (under letter contract) 4/16/01 

4/17/01 Kick-Off Meeting at JPL 

v Phase 2 Concept Designation 7/30/01 

Phase 2 and Final Reports 10/30/01 7 

The Teams 

Four teams conducted the studies, each having substantial 
involvement by industry and academic partners. More than 
20 institutions and companies were involved. The teams 
were led by: 

Ball Aerospace & Technologies Corporation 
(BATC), Boulder, Colorado. 

0 The Boeing Company, Huntington Beach, California. 
Lockheed Martin Corporation, Denver, Colorado. 
TRW, Redondo Beach, Califomia. 

The significant partners are identified in each of the papers 
written by the teams (see References in this paper). 

The teams had varied amounts of involvement in previous 
MSR studies and represented a broad range of space mission 
implementation viewpoints, ranging from previous Mars 
missions to the Space Station. 

A fundamental guideline for the study was for the teams to 
assume a MSR-mission implemented by the US without 
consideration of international partners. Even though 
international participation by ASI, CNES and the Canadian 
Space Agency (CSA) is likely, t h s  US-only approach led to 
a comprehensive study of the full mission, the results of 0 

which could later be manipulated to include international 
partners. 0 

Procurement Process 

Time was of the essence in obtaining the study results, as 
indicated in the previous section. A process was used that 
allowed a turn-around of solicitation to contract withm 6 
weeks. This process served as a pathfinder for the MEP and 
will allow future studies to occur rapidly; in fact, the current 
industry studies for the Mars Ascent Vehicle (MAV) mirrors 
the MSR process. 

Proposals were submitted in the form of the viewgraph 
package used for oral presentation by the team. This format 

0 

0 

0 

allowed interaction with the proposed study teams in a 
controlled fashion, enabled quicker response time by 
industry, and eliminated the written proposal typical in a 
two-step process of proposal-then-orals. 

The request for proposal (RFP) and all exhibits can be found 
at http://acauisition.ipl.nasa. pov/rfD/msrO 1/. 

4. STUDY REQUIREMENTS AND CHALLENGES 

Basic Requirements 

The basic requirements for the mission are: 
0 Launch in 201 1 (with option of 2013). 
0 Return - 1 kg of varied sample. 
0 Accurate, safe landing on the Martian surface in a 

relatively broad range of altitude and latitude. 

Science Requirements 

The science baseline objectives are as follows: 
The objective of the mission is to return Martian 
samples to Earth for analysis. However, Earth 
handling and analysis of the samples is deemed to be 
outside the scope of these studies. 
The total mass of samples returned by a first mission 
shall be greater than 500 g. 
Returned samples shall include rock, regolith, and 
atmosphere and shall be selected using a payload of 
scientific instruments and sub-surface sampling tools. 
Sample diversity shall be ensured by providing 
mobility for the sample selection and collection 
payload of no less than 1 km, measured as a radial- 
distance from the landing site. The 1-km radial 
distance can be achieved over a period of a few 
months. 
A sample from a depth of at least 2 m shall be 
returned. 

http://acauisition.ipl.nasa


Any landing site within 15 degrees of the equator and 
at any altitude below +1.5 km (with respect to the 
MGSMOLA-based mean reference) shall be 
accessible. 
Landing accuracy shall be no worse than 50 km 
(semi-major axis of the three-sigma landing ellipse). 

For the first phase of the study (trade study), desired 
increases and potential decreases were specified and were 
intended to bring out trade sensitivities and allow a greater 
range of mission options: 

Desired Increases in Science Content 
Survival of surface science assets after the sample 
has left the surface of Mars, extending in situ 
investigations to a total of at least two years. 
Extended mobility beyond the 1 -km sample return 
mobility requirement to at least beyond the perimeter 
of the landing uncertainty footprint. 
Improve landing accuracy to < 5 km. 
A sample from a depth of at least 10 m. 
Landing site accessibility to f 45 degrees from the 
equator. 

0 Potential Decreases in Science Content 
- Reduced or eliminated mobility: collect sample at 

> 10 m from Lander 
- Reduce sample depth requirement to !4 m. 
- Reduced landing accuracy: < 200 km 

In addition, all lander designs had to allocate at least 50 kg 
for science instruments, including those to be used for: 

0 Sample selection. 
In situ science. 
Experiments supporting future human exploration. 

Constraints and assumptions 

A set of constraints and assumptions were also specified: 
A MEP overall budget of $5OOM/year (Real Year 
Dollars). 
MSR (2011) development between $ lB  and $2B, 
including launch vehlcle(s) and the mission operations 
system. 
Cost Estimates not to include technology development, 
flight validation demonstrations, mission operations, or 
preparation for and implementation of handling the 
retumed sample on Earth. 
Telecommunications and operations assets in place and 
available for MSR. 
Design margins to standard JPL guidelines. 
Premium on safe landing on Mars using: 
- Robustness of landing system design to potential 

surface hazards. 
andor 

- Systems for hazard avoidance during landing. 
Technology Readiness Level Achievement schedule 
constraints are specified as follows (see Technology 
Readiness Level Definitions, Figure 4): 

- TRL 5 - by Preliminary Mission System Review 
(before Phase B start). 

- TRL 6 - by Preliminary Design Review (before 
Phase C start). 

- TRL 7 - by Critical Design Review (if required) 
(before Phase D start). 

0 Deep Space Network available. 
0 At least one Mars orbiter in place to support sample 

return elements with telecommunications relay and 
proximity navigation support. 
Full core mission operations services typically supplied 
by the JPL Telecommunications and Mission Operations 
Directorate (TMOD) Mission Management Office. 
Delta and Atlas family launch vehlcles and STS 
available. 

0 Planetary Protection Requirements - forward, back and 
round-trip (see below). 

0 

~ ~ ~ ~ ~ , m *  I Actual system "flight proven" through successful 
mission ooerations 

TRL 

T ~ L  7 

Actual system completed and "flight qualified" 
through test and demonstration (Ground or Flight) 

System prototype demonstration in a space 
environment 

Systemlsubsystem model or prototype demonstration 
in a relevanl environment (Ground or Space) 

S ysWSubs ystem 

Research to Pmve 

Basic Techroboy 

Component and/or breadboard validation in 
laboratory environment 

Component and/or breadboard validation in 
relevanl environment 

Analytical and expenmental critical function andlor 
characteristic proof-of-concept 

Technology concept andlor application formulated 

Basic principles observed and reported 

Figure 4. Technology Readiness Levels. 

The Toughest Challenge - Planetary Protection 

Planetary Protection constraints are mandated by 
international treaty, and specified by NASA Policy 
Directives (NPDs) and NASA Procedures & Guidelines 
(NPGs). Most of the requirements for sample retum are 
derived from two general concerns, which have the potential 
to drive the system: 
0 The need to control the amount of samde contamination 

by round-trip Earth organisms to avoid false positives in 
life detection tests (for the purposes of this study we 
assumed a goal of sterilization of the entire Lander to 
Viking levels, or proof of 4 0 e - 2  chance of a single 
Earth organism in the sample). 
Sample containment assurance: The requirement that the 
integrated probability of back contamination be kept 
below a specified level (with a lack of a specific 
requirement, for the purposes of this study we assumed a 
goal of probability of release of Mars material to the 
Earth's biosphere to being less than 1 in a million). 



Rendezvous Insertion 

Figure 4. Mars Sample Return Trade Space. 

While dry heat is the only sterilization t echque  officially 
recognized by NASA, most spacecraft designers believe it 
would be extraordinarily expensive to build a spacecraft 
with modem avionics that could be heat sterilized the way 
Viking was. As an alternative, the capability to sterilize the 
appropriate elements of the MSR spacecraft with hydrogen 
peroxide H202 is being developed. In a “local sterilization 
and isolation” option, the sample collection and containment 
gear would be sterilized using heat, H2O2, or other means, 
and then isolated from other parts of the spacecraft. The 
isolation includes bio-barrier enclosures and modeling of 
contaminant migration patterns. Another key development is 
a technique for collecting clean samples from beneath a 
Martian surface possibly contaminated by migration of Earth 
microbes from a lander or rover. 

Many elements of the MSR mission must be designed for 
high reliability in order to meet the containment assurance 
requirements and many of these elements will require 
development of new technology. The exterior of the sample 
container cannot be contaminated with Martian material. 
Breaking the chain of contact with Mars will be key and 
involves one or more sample handoff steps that pass forward 
a clean container on the Mars surface, during ascent, during 
Mars orbit rendezvous, andor in Earth orbit. The sample 
container and its seals must survive Earth impacts 
corresponding to the candidate mission profiles. The Earth 
Entry Vehicle(s) (stand-alone in the Direct Entry case or a 
vault for a Shuttle entry case to mitigate Shuttle accident 
effects) must also withstand thermal and structural rigors of 
Earth atmosphere entry and be protected from micro- 
meteoroid or space debris impacts. In the Direct Entry case, 
the mission profile needs to be robust enough to mitigate 
risks to the EEV arising from entry, navigation, or maneuver 
errors. In the Shuttle option, risks arising from failure modes 
in which the Shuttle is unable to retrieve the sample 
container must be well understood and mitigated in the 
design. 

5 .  PHASE 1 - TRADES STUDIES 
Figure 4 graphically shows the mission approaches that are 
available to MSR and can be referred to in the following 
generic description, as well as the Trade Space discussion. 

Generic Mission Synopsis 

Generically, a MOR8 Mars sample return mission would 
consist of a Mars orbiter and lander launched together or 
separately (lander on a cruise-carrier if not part of the 
orbiter). The orbiter inserts into low Mars orbit (via 
chemical, aerobraking, or aerocapture) and the lander goes 
in entry/descent/landing directly from the Earth-Mars 
trajectory or is released for entry from the orbiter. The lander 
has a rover for sample collection mobility, a MAV for 
getting the sample off the Martian surface, sample handling 
equipment, and science instrumentation. Samples are 
obtained and packaged into a small Orbiting Sample (OS) 
container that is lifted into low Mars orbit by the MAV. The 
orbiter affects a rendezvous and capture of the OS, which is 
returned to Earth on an Earth Return Vehicle (ERV) 
(probably a subset of the orbiter). At Earth, the sample 
enters directly via an Earth Entry Vehicle (EEV) or goes into 
Earth orbit for rendezvous with another vehicle (e.g., the 
shuttle). Post-landing sample handling is outside the scope 
of the MSR studies. 

The Trade Space 

During Phase 1, each team was asked to perform a broad 
trade study addressing at least a minimum set of trades. 
Those trades, in mission-chronological order, are: 

Launch. 
- Separate spacecraft launches on expendable launch 

vehicles. 
- Combined spacecraft launch on an expendable launch 

vehicle. 
- Shuttle launches with spacecraft assembly on-orbit. 

- . Earth-to-Mars transit. 
-Ballistic flight. 
- Low-thrust flight. 

- Approach navigation. 
- Radio data types. 
- Optical data. 

- Orbit insertion. 

Earth-to-Mars cruise and approach. 

Mars orbit. 

- Chemical propulsion. 

8 This description is for a mission that utilizes Mars Orbit Rendezvous 
(MOR) for sample exchange from the MAV to an earth retum vehicle. 
Other architectures are possible including deep-space or libration-point 
rendezvous or even direct retum of the MAV without rendezvous. 



- Aerobraking. 
- Aerocapture. 

0 Mars atmosphere entry, descent, and landing. 
- . Lander entry. 

- Lander entry direct from cruise. 
- Lander entry from Mars orbit. 

- Entry aeroshell shape. 
-Chutes. 
- Powered descent. 

- Landing techniques. 
- Hazard detection and avoidance. 
- Impact attenuation. 

- Entryldescent techniques. 

0 On the surface. 
- Sample collection. 

- Mobility. 
- Sub-surface. 
- Collection options. 

- Sample handling. 
-Number of exchanges. 
-Risks. 
- Contamination chain. 

- Communications requirements and infrastructure. 
- Post-sample collection long surface life, lateral and 

subsurface range. 
0 Ascent from Mars surface. 

- Returnprofile. 
- Mars rendezvous. 
- Deep space rendezvous. 
- Direct return to Earth. 

- Mars ascent vehicle. 
- Solid propellant. 
- Unguided. 
- Guided. 
- Liquid propellant. 
- Cryogenic propellant. 
- In situ propellant production (ISPP). 

- On rover. 
- On lander. 

- Options for ground asset survival after MAV launch. 
0 Mars-to-Earth cruise. 

- Mars ascent vehcle. 

- Mars-to-Earth transit. 
-Ballistic flight. 
- Low-thrust flight. 

0 ReturntoEarth. 
- Earth atmosphere entry capsule. 

-Direct entry from cruise trajectory. 
- Entry from Earth orbit. 

- Shuttle rendezvous. 

- Launches in same opportunity. 
- Launches in separate opportunities. 

Program phasing. 

The teams also identified additional trades: the most 
significant were one versus multiple landers and the use 
solar power versus Radioisotope Power Source (RPS) on the 
surface of Mars. 

Each team was required to produce a concept in Phase 1 that 
met the baseline science requirements detailed earlier9. If 
that concept had its associated MSR rough-order-of- 
magnitude (ROM) cost in the $1B to $2B range (see Figure 
5 (I)), the second concept should strive for the “baseline +” 
(see Figure 5 (2)) science to determine the science-to-cost 
sensitivity. If the MSR ROM cost for baseline science was 
near or greater than $2B (see Figure 5 (4)), the second 
concept should strive to meet the “baseline science -” (see 
Figure 5 (3)) to determine the science-to-cost sensitivity 
over the $1B to $2B range. One million to 2 billion dollars 
was selected as the desired range because previous studies 
indicated that MSR would certainly cost more than $1B; 
$2B was felt to be a programmatic limit given current and 
projected budget constraints. 

This sensitivity analysis worked better in theory than in the 
actual results after Phase 1. The main reason the sensitivity 
analysis did not work was that the absolute cost ROMs were 
overly optimistic. This led to to Phase 1 results stating that 
“baseline +” science fit easily within $2B. When further 
analysis in Phase 2 showed they did not, the relative ROMs 
for Phase 1 were useful in determining the selected Phase 2 
concept for each team. 

1 B$‘s 289’s 

Figure 5. Sample Return Trade Space. 

Phase I Results 

Figures 6a-d summarize the elements and features included 
in the teams’ approaches. Of the total number of approaches 
presented, the figures indicate the percentage of inclusion of 
a feature, color coded by team. The results for each team are 
reflected in each team’s individual paper (previously cited). 

Creative mission approaches ranged from “grabbing” a 
sample and returning quickly to Earth to multiple landers in 
varying sites returning more than one OS. Many creative 
ideas were presented for surface mobility. 

One of the pervasive qualitative assessments made was that 
for the most part, mission costs estimates were way too 
optimistic; and the final results showed that to be true. 

Science requirements were derived from Mars Exploration Payload 
Assessment Group (MEPAG) measurements, MPSET input, discussions 
with the MEP scientists at NASA headquarters, and discussions with the 
MEP chief scientist at JPL. 
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6. PHASE 2 - Focus STUDIES 
After Phase 1, the Advanced Studies Office at JPL in 
conjunction with the MEP and the Mars Program System 
Engineering Teamlo (MPSET) directed the four industry 
teams to narrow down the scope of their studies. This 
direction took into account: 

MEP goals for MSR, including required technology 
definition and precursor missions. 
MPSET advise on the scope and content of the MSR 
trade space. 

0 

0 Industry team technical capabilities. 
Industry team desires. 
Any areas that were not examined as part of previous 
or current MSR studies. 

Within a few days of the Phase 1 industry team briefings, 
JPL directed each of the teams for Phase 2. Additionally, 
whereas each team had considerable freedom to interpret the 
MSR program requirements’’ in Phase 1, much more 
specific guidance was provided in Phase 2. Specifically, 
each team was to assume the Science Baseline Objectives, as 
previously listed, with 2 modifications: 

0 A sample from a sinde hole of a depth of at least 2 m 
shall be returned. 
Landing accuracy shall be no worse than 10 km (the 
previous objective was 50 km) (semi-major axis of 
the three-sigma landing ellipse). (Ths was based on 
assuming that the precursor lander mission will have 
already demonstrated th s  accuracy.) 

A few additional requirements were given with regard to the 
use of MEP assets to further reduce the risks associated with 
MSR. These requirements were: 

0 An optical navigation camera should be on all 
orbiters and any direct-entry landers (design and cost 
were supplied by JPLI2). The orbiter optical 
navigation camera should be capable of being used to 
detect an un-powered Orbiting Sample in the unlikely 
event the OS becomes un-powered and fails to emit a 
beacon. 

0 An OS beacon shall be detectable by the existing 
orbital telecommunicationshavigation asset 
(nominally the 2007 ASI/NASA telcodnav orbiter). 

0 

MPSET advises the MEP on technical issues. MPSET membership 
currently consists of respected technical experts at the NASA centers, the 
NASA HQ program executive for MSR, and representatives of the French, 
Italian, and Canadian space agencies. 
11 Program requirements are used here as the requirements that MSR & 
meet. These requirements are developed through a process of developing 
the science requirements via the science community (using such groups as 
the Mars Exploration Payload Assessment Group, or MEPAG), interacting 
with the technology community, and determining what MEP needs from 
MSR. 
l 2  The 2005 Mars Reconnaissance Orbiter mission is slated to fly an MEP 
optical navigation camera that could be used, unchanged, for all future Mars 
missions. This is a direct result of MEP instituting multiple approach 
navigation data types to make Mars missions more robust after the Mars 
Climate Orbiter loss of mission in 1999. 

IO 

The OS design shall include (as a back-up capability) 
the ability to be detected whle the OS is un-powered. 
All landers shall have terminal hazard avoidance and 
be capable of tolerating 1.0-meter obstacles and 30- 
degree slopes. 
All landed assets (landers, rovers and MAVs) shall 
have the capability to communicate with (and be 
tracked by) an existing orbital communications asset 
(nominally, the 2007 ASI/NASA telcodnav orbiter). 
Lander telemetry shall be continuously sent to the 
orbital communications asset during EDL. MAV 
telemetry shall be continuously sent to the orbital 
communications asset during ascent from the Martian 
surface. 
No mid-L/D EDL13, use Viking heritage EDL. 

Besides these general Level 1 requirements, the teams were 
to study the subjects detailed in the sections that follow. 

Ball 

Study MSR consisting of a single launch on a NASA 
Evolved Expendable Launch Vehicle (EELV), direct entry 
of the lander at Mars, chemical propulsive Mars Orbit 
Insertion (MOI) with aerobraking of the orbiter/ERV, 
surface mobility consistent with the Science Baseline 
requirements, single OS to low Mars orbit rendezvous, 
chemical propulsive return of the ERV to High-Earth Orbit 
(HEO), and rendezvous with an EEV deployed byheturned 
to the US Space Shuttle or used for direct entry to the 
surface of the Earth. 

Boeing 

Study MSR consisting of a dual-launch (two separate 
launches of an EELV), ballistic lander cruise, solar electric 
propulsion (SEP) ERV transfer, propulsive capture of the 
lander in elliptical Mars orbit or a direct Mars entry, SEP 
spiral ERV to low Mars circular orbit, one rover with WS, 
2-meter drill and 1 km range, MAV to ERV for transfer of 
OS, SEP spiral ERV from Mars and spiral into low Earth 
orbit (LEO) for shuttle pick-up. 

LMA 

Selected for study are two variations of MSR. The first 
variation is the “Libration Point Rendezvous”, which 
includes a single launch for ballistic cruise, direct entry of a 
single lander and propulsive capture of ERV, MAV 
rendezvous with an ERV in a Mars Libration Region, 
ballistic return, and direct entry at Earth (ala, 
Genesis/Stardust). The second variation performs the MAV 
rendezvous with an ERV at Low Mars Orbit. The LMA 
Phase 2 study compared and contrasted these two MSR 
architectures. 

l 3  Mid VD refers to Lift/Drag ratios of greater than about 0.25. Viking 
heritage EDL was specified due to the large cost and uncertainty associated 
with qualifying a new EDL technology. Also, mid U D  is not needed when 
MSR can be accomplished with a precision landing ellipse of - I O  km (3 
sigma). The precision landing is slated to be demonstrated on the 2009 
landerhover surface mission. 
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Study MSR consisting of a single launch on an EELV, SEP 
cruise and Mars orbit capture (via spiral into Mars orbit with 
SEP system), 2 landers (with MAVs) deployed from low 
circular orbit, return of one OS, SEP departure and cruise to 
Earth, and a direct entry at Earth. 

At the end of Phase 2, each of the teams presented the results 
of their studies. Figure 7 represents a summary of the 
architectures studied by each of the teams. After the results 
were compiled from each team by the JPL Advanced Studies 
Office, it became clear that another quick-turnaround study 
would be needed to corroborate the results of each of the 
teams. To this end, JPL’s Team X (Advanced Mission 
Design Team) studied two options of MSR under the same 
study assumptions that each of the industry teams had for 
Phase 2. The results of the Team X studies are included in 
the last two columns of Figure 6 ,  and are discussed in depth 
in paper. 

Some general observations after Phase 2 are: 
0 MSR, using Mars orbit rendezvous, is possible with 

near-term small improvements to Viking heritage EDL 
systems. 
US industry felt that MSR should use the largest EELV 

0 

0 

available and launch everything on one launch vehicle. - 

SEP appears to have benefits in terms of delivered mass 
capability. However, it is still to be determined whether 
the longer flight times lnherent in MSR missions 
utilizing SEP are acceptable. 
A scientifically justifiable MSR is possible with current 
MER surface mobility capabilities. 
MSR appears to be a $1.5B to $3.OB class mission. This 
breaks down to $1.5 to 2.OB for a one-lander mission, 
and $2.5 to 3.OB for a two-lander mission (preferred by 
industry). Sample handling methods needed for planetary 
protection are the largest uncertainties in these estimates. 
It has not yet been determined whether the sample should 
be brought directly to the surface of the Earth or should 
enter Earth orbit and be brought from Earth orbit down 
to the surface via some other flight system (such as the 
Space Shuttle). 
A precursor mission to reduce the risk of MSR, including 
precision EDL, hazard avoidance, and hazard tolerance, 
is necessary. 
By and large, the MTP is concentrating on the correct 
technologies to reduce the risk, complexity, and cost of 
MSR. Some of these technologies include 
rendezvouslcapture, the Mars Ascent Vehicle, and 
sample handling. 

purther observations specific to each of the studies will be 

and presentations in this session (see references). 
us industry did not that aerocapture at Mars is given by each of the industry study teams via their papers 
enabling. 

Figure 7. An overview of the results of the Phase 2 industry studies plus post-Phase 2 studies with JPL Team X. Details of 
each of these studies are in the papers given by each of the industry study teams plus the paper by JPL’s Team X. 



7. SUMMARY 
MSR is a complex robotic mission. The best of NASA, 
industry, and academia will be needed to accomplish the 
mission. Additionally, MSR will most likely require 
international partners. Given these realities, it seems 
appropriate to ask US industry to examine MSR trades and a 
likely architecture in more depth. US industry had not been 
engaged as a whole in MSR studies since the late 1980s 
when MRSR was studied by NASA together with industrial 
partners (see the extended bibliography at the end of this 
paper for some relevant references to MRSR). Consequently, 
the JPL Advanced Studies Office commissioned industry 
study teams to examine MSR with a fresh look. Ball, 
Boeing, LMA, TRW, and their numerous partners should be 
commended for providing outstanding value for the money 
spent on these studies. Additionally, these studies should 
provide a future model for engaging industry and academia 
in MEP advanced studies. The input is valuable to the 
program and will help advance the cause of MSR. 

Finally, while it is uncertain as to an exact date for MSR, all 
of the steps are being taken to lay the foundation for a 
successful mission some time next decade. The studies 
outlined in this paper take a big step forward in making 
MSR a reality. 
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landers will launch surface samples into Mars orbit, and the 
orbiter will retrieve the samples in orbit and then deliver 
them to Earth. T h s  paper provides an overview of the 
preliminary mission design for the Mars Sample Return 
mission. 
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US.  payload for sample detection and capture plus two 
Earth Entry Vehicles for landing the samples on Earth. The 
Orbiter also delivers four NetLanders to Mars for 
performing unique surface science. Significant in-situ 
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Pritchard, E. B., Ed., Mars: Past, Present, and future; 
Proceedings of the Conference, Williamsburg, VA, July 16- 
19, 199 1, National Aeronautics and Space Administration. 
Langley Research Center, Hampton, VA, American Institute 
of Aeronautics and Astronautics (Progress in Astronautics 
and Aeronautics. Vol. 145), 1992. Abstract: None available. 

Randolph, J. E., Mars Rover Sample Return Orbiter Design 
Concepts, AIAA, Aerospace Sciences Meeting, 27th, Reno, 
NV, Jan. 9-12, 1989. 9 p., 1989. Abstract: None available. 

Reiber, Duke B., Ed., The NASA Mars Conference, San 
Diego, CA, Univelt, Inc. (Science and Technology Series. 
Volume 71), 1988, 588 p. (For individual items see A89- 
16177 to A89-16199), 1988. Abstract: None available. 

Smith, Bruce A., NASA Invests Heavily in New Technologv, 
Aviaton Week & Space Technology (ISSN 0005-2 175), Vol. 
153, no. 24, p. 63,66-67, 2000. Abstract: NASA's plans to 
develop a series of second-generation Mars landers and 
rovers intended to provide safer and more accurate landings 
and the capability to cover far greater distances over the 
surface of the planet are reviewed. This work is aimed at 
providing future technology options, beginning with a 
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aerobrakinglaerocapture techniques and rely on lightweight 
spacecraft technologies. The planned missions include the 
Stardust project, a mission to bring back debris cloud 
particles from the Comet Wild-2, and Japan's Muses-C, 
intended to recover samples from the near-Earth asteroid 
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participation of France, Italy, and several other European 
countries in the Mars sample return missions and the 
demonstration flight that will precede them is discussed. The 
French national space agency, CNES, will provide two 
orbital vehicles, one for a demonstration mission in 2007, 
and the other for the first Mars Sample Return (MSR) flight. 
It will also provide a network of four Netlander probes to 
accompany the 2007 mission, as well as the launch for the 
2007 mission. The Italian space agency, ASI, will supply a 
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propulsion on the Deep Space 1 technology demonstration 
mission has paved the way for the use of this technology on 
future planetary missions. Currently there is much interest in 
retrieving Mars surface samples for scientific exploration, as 
well as developing the technology to enable human missions 
to Mars sometime in the next few decades. Solar electric 
propulsion trajectories for Mars opportunities in the 2004- 
201 1 time frame are examined. All of the trajectories shown 
were optimized with a gradient-based calculus-of-variations 

tool. In addition, a genetic algorithm was used to search for 
more nonstandard trajectories. Mission performance is 
presented as burnout mass along contours of constant flight 
time. The superior specific impulse of these propulsion 
systems results in a larger delivered mass at Mars than a 
conventional chemical mission. A very curious feature of 
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